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Identifying key patterns in motorcycle crashes: findings from
taxicab correspondence analysis
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ABSTRACT
Due to the absence of protective structural surrounding and
advanced restraints like the motorists, motorcyclists are considered
vulnerable roadway users like pedestrians and bicyclists. Per vehi-
cle mile traveled in 2016, motorcyclist fatalities occurred 28 times
more frequently than passenger car occupant fatalities. The identifi-
cationof thepatterns andassociationsbetween key contributing fac-
tors can help in determining strategies for motorcycle-related crash
reduction. In addition to current endeavors, there is a need for newer
directions in study design with newer data sources and methods.
Determining the groups of core factors helps address motorcycle
crashes more effectively. This study used seven years (2010–2016)
of motorcycle crash data in Louisiana to determine the key rela-
tionships between the influencing factors by using Taxicab Corre-
spondence Analysis (TCA). The analysis showed that TCA presents
a dimension-reduced map of the variable categories by developing
several clusters.
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Introduction

Motorcycle crashes lead to a high rate of traffic fatalities and serious injuries. In 2017,
motorcyclist fatalities in the U.S. occurred 27 times more often than passenger car occu-
pant fatalities per vehicle mile traveled. In 2017, there were 5,172motorcycle crash-related
fatalities recorded in the U.S. – a 16% increase from the number of motorcyclists killed in
2009 (NHTSA 2019). The identification of the patterns and associations between key con-
tributing factors can help develop strategies to reduce motorcycle-related crashes. The
traditional approach of motorcycle crash studies is the establishment of a relationship
between key contributing factors and crash occurrence, sorted by injury level. One key
deficit of the developed models is that these models depend on general inferences and
aggregate measures. Additionally, these methods must consider several assumptions to
perform the analysis.

The major task of highway safety analysis is to identify the highly associated factors
for targeted crash types. The Taxicab Correspondence Analysis (TCA) method is a pat-
tern recognition tool that investigates the significance of variable attributes by identifying
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the co-occurrence of variable groups from within a complex dataset with a wide range of
variables. The TCA method considers arbitrary data sets as a mixture of points in a high
dimensional space. This technique aims to simplify a complex data structure to meaning-
ful knowledge in the form of trends and patterns. Instead of depicting the relationships
between a set of dependent variables and crash outcomes, TCA is used to analyze the
associations between multiple variable attributes for pattern recognition. It is beneficial
to understand patterns of a complex dataset, so the methodological framework is often
comprehensive. In this context, the main goal of this study is to determine the relation-
ships between and the significance of key variables by using seven years (2010–2016) of
Louisiana motorcycle crash data. Specifically, the study assesses the association between
factors and describes the significance and inference of clusters and risk factors.

Literature review

Many studies have examined the patterns and trends of motorcycle crashes. These studies
can be divided into three broader groups: (1) vulnerability measures, (2) key contributing
factors, and (3) crash severity analysis.

Vulnerabilitymeasures

Themajor task of highway safety analysis is to identify themost highly associated factors for
targeted crash types. Motorcyclists have less protection, and they maintain higher speeds
than other non-motorcycle motorists, so vulnerability measures are particularly high in
motorcycle-related injuries. In an early study, Peek-Asa, McArthur, and Kraus (1999) exam-
ined the frequency of head injuries for non-standard helmet use amongmotorcyclists. The
study used statistical tools such as Chi-squares and variance analysis in order to differen-
tiate among groups using the medical records of the motorcyclists injured, which were
collected from the available crash reports. The study concluded that the frequency and
severity of head injuries were greater among motorcyclists using non-standard helmets
than those using standard helmets or those with no helmet. Cohn et al. (2004) studied
the impression of crashes on motorcyclists and the consequences of crashes after a year
of the injury. The study utilized various data like demographic data, health condition, hel-
met usage, and employability of 94 patients for a period of six months. In another study,
Khor et al. (2017) usedmultiple logistic analysis to explore the relationship between helmet
use and C-spine injuries as a result of motorcycle crashes. The study gathered information
including demographics, vital signs, Abbreviated Injury Scale (AIS), Injury Severity Score
(ISS), and specific injuries for all motorcycle collisions between 2007 and 2014 involving
either a driver or passenger. The research found that the use of helmet decreases the like-
lihood of head injuries and casualties; however, no connection with C-spine injury was
identified.

De Rome (2005) developed a variety of plans and policies that aimed to solve road safety
problems associatedwithmotorcycles as a type of transport. Specifically, the policies aimed
to reduce motorcycle crashes and casualties. A model for the development of motorcycle
safety plans was developed with the aim of providing a systematic structure and process
in the development of plans to promote all stakeholders’ ownership of priorities and coun-
termeasures. Furthermore, Ogle and Tillotson (2008) observed that the use of helmets was
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effective in reducing the danger and incidence of both head wounds and deaths in motor-
bike crashes, as well as in decreasing hospitalization and healthcare expenses. They also
considered some of the statements against using helmets, including the individual’s right
to choose to wear a helmet.

Key contributing factors

The assessment of contributing factors for motorcycle crashes is difficult due to a lack of
consistent real-time environment information and other information needed to under-
stand the causation patterns of motorcycle crashes. Kostyniuk and Nation (2005) examined
the trends and patterns ofmotorcycle crashes from 2001 to 2005with the objective of aug-
menting motorcycle-related fatalities in Michigan. Similarly, Ryb et al. (2009) concentrated
on the impact of age on the consequence of injured individuals in a Maryland data set link-
ing hospital discharge documents and police reports. This study examined whether this
mortality rise reflected alterations in collision frequency or case fatality levels in any specific
age category. In another study, Medina and Soto (2011) aimed to define their perception
of the relationship between highway condition and motorcycle safety. They conducted a
39-segment highway review method using correlation, ANOVA, and multiple regression
analyses, along with a motorcycle drivers’ study. Results of the research suggested that
the primary road components connected with motorcycle collision rates were the type
and width of cross-section, junction density, published speed limit, presence of on-street
parking, pavement faults, and housing development.

Naumann et al. (2010) investigated on the recent high rise of motorcycle crashes.
Weighted ratios and rateswere calculated, and the number of potentialmotorcycle crashes
was estimated using linear regression. The research showed a growing trend, and pre-
liminary estimates suggest that, due to present developments, these casualties could
almost double from 170,000 to 320,000 annual injuries from 2008 to 2020. Correspond-
ingly, Eustace, Indupuru, and Hovey (2011) used Ohio crash information from 2003 to 2007
to explore the likelihood of a motorcyclist being seriously wounded in a collision and the
concerning risk variables. The findings indicated that the risk of fatality rises considerably
when the following conditions apply: female rider, speeding, impairment, driving without
a helmet, single rider collisions or non-intersection place, collision on horizontal bends or
graded sections, and on main roads.

Safety training is one potential countermeasure that could be used to reduce motor-
cycle crashes. Shaheed and Gkritza (2014) examined whether states that require driver’s
education have a lower risk ofmotorcycle collisions than the stateswhere it is not a require-
ment. In addition, they analyzed Iowa motorcycle crash data from 2001 to 2008 by using
a latent class strategy to explore variables influencing collision seriousness and resulting
in one-vehicle motorcycle crashes. The findings of the assessment indicated an important
connection between the serious outcomes of collision injury and crash-specific variables
such as speed, run-off highway, no helmet, impaired riding, and others. Wu et al. (2018)
investigated which types of motorcycle crashes constitute the greatest safety risk to rid-
ers. Chawla, Karaca, and Savolainen (2019) conducted factor identification by using the
publicly available Federal Highway Administration (FHWA) Motorcycle Crash Causation
Study (MCCS).
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Crash severity outcomes

Several studies have quantified how different factors are associated with injury severity
of motorcycle crashes. Using full Bayesian formulation, Cheng et al. (2017) developed five
models representing different correlations of weather conditions and commonmotorcycle
crash injuries and compared best-fit measures for four different levels of severity. Waseem,
Ahmed, and Saeed (2019) found a need to lower speed limits on highways with a greater
motorcycle ratio, distinguish motorcycles from heavy cars, remove fixed items from the
roadside, and reduce risky conduct of motorcyclists. Chung and Song (2018) used Korean
motorcycle crash data from 2009 to determine the critical factors that affect motorcycle
crash severity based on categorical principal components analysis (CatPCA) and nonlinear
canonical correlation analysis (NLCCA). Rappole et al. (2019) conducted a study on key con-
tributing factors associated with the U.S. Army personnel rider fatalities. Das et al. (2018b)
used a deep learning technique to examine five years (2010–2014) of Louisiana at-fault
motorcycle rider-involved crashes. The developed model can predict severity types with
high precision (94% accuracy), which is not typically achieved using a statistical method or
machine learning algorithm.

The literature review identifies a critical gap in ongoing motorcycle crash studies. Many
studies have focused either on factor identification or severity analysis. Analysis aiming to
identify patterns of contributing factors has been explored less. The present study aims to
mitigate the current research gap by applying an innovative data mining method.

Methodology

Taxicab correspondence analysis (TCA)

Jean-Paul Benzećri (1992) developed a multivariate statistical technique, called correspon-
dence analysis (CA). There are several books that contain further information about CA if
readers desire more detail (Benzećri 1992; Murtagh 2005; Greenacre and Blasius 2006; Le
Roux and Rouanet 2010; Hjellbrekke 2018). Choulakian recently proposed an improved ver-
sion of CA, called taxicab correspondence analysis (TCA), in a series of papers (Choulakian
2006a; Choulakian 2006b; Choulakian 2013). Various forms of CA analysis have been used
in transportation safety studies (Das and Sun 2015; Das and Sun 2016; Jalayer, Pour-
Rouholamin, and Zhou 2018; Das et al. 2018a; Das et al. 2019; Das and Dutta 2020; Das et al.
2020a; Das et al. 2020b; Das et al. 2020c; Das, Tran, and Theel 2020d).

CA is based on Euclidean distance. On the other hand, the concept of TCA is based on
taxicab distance or Manhattan city block distance. Consider, X = (x1, x2, . . . .., xn) and Y =
(y1, y2, . . . .., yn) and a vector v = (v1, v2, . . . .., vn) to evaluate these distances:

EuclideanDistance = ED(X , Y) =
√√√√ n∑

i=1

(xi − yi)2[with L2 Norm = ||v||2 =
√√√√ n∑

i=1

(vi)2]

(1)

TaxicabDistance = TD(X , Y) =
n∑
i=1

|xi − yi|[with L1 Norm = ||v||1 =
n∑
i=1

|vi|] (2)

The concept of singular value decomposition (SVD) is important to understand the core
concept of different variants of CA. The analysts can consider a real matrix A, which can be
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decomposed as M�1/2N′, with � the diagonal matrix of the real non-negative eigenval-
ues of AA′ inwhichM the orthogonal matrix of the corresponding eigenvectors, and N the
matrix of eigenvectors of A′A (with constraintsM′M = I andN′N = I).The k-rank matrix can
be written as:

aij =
k∑

i=1

√
λαmiαniα (3)

Choulakian (2013) used a recursive optimization process to build the SVD outcomes. In
TCA, the distances can be considered as L∞ metrics. The distance can be calculated by
maxi∈(1,n)|xi − yi| [with L∞Norm = v∞ = maxi∈(1,n)|vi|]. The analysts can find the solution
by recursively applying the optimization problem on the residuals in the form of taxicab
singular value decomposition (TSVD). The relations between rows and columns of N are
summarized by the χ2 statistics. The independence can be formulated as N0 = nT0 = nrl′.
The change from independence can be estimated as:

χ2 = nθ2 = n
∑
i

∑
j

(
(tij − ti.t.j)2

ti.t.j

)

= n
∑
i

∑
j

d2ij
ti.t.j

[with(r − 1) × (l − 1)degrees of freedom] (4)

TCA can be described asTaxicab SVDof the data tableD = T − rl′ by considering the table’s
profiles, respectively R = D−1

r D for the rows and L = D−1
l D for the columns. The solution

considers the residuals from the previous factors for each new step (a clear distinction from
the conventional CA approach). The equations can be written as:

T = prp
′
c +

k∑
α=2

1
λα

BαC
′
α (5)

Elementwise the formula becomes:

tij = ti.t.j +
k∑

α=2

1
λα

BiαCjα (6)

After conducting the transformation:

nij = nrilj(1 +
k∑

α=2

1
λα

biαcjα) (7)

Data description

Data integration

The current study collected seven years (2010–2016) of traffic crash data from the Louisiana
Department of Transportation and Development (LADOTD). The database contains infor-
mation at three levels: (1) crash level data (each row indicates crash level information),
(2) vehicle data (each row indicates driver level information), and (3) roadway inventory
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(each row indicates inventory information for each crash). It is important to note that the
entries in vehicle data are greater than the entries in crash level data as vehicle data con-
tains information of each involved vehicle in a crash. The crash identification numbers of
vehicle databases are later merged with crash level and roadway inventory databases to
develop a comprehensive database. Altogether, 14,084 motorcycles andmotorcycle riders
were identified in this study. Figure 1 illustrates the flowchart of the study design.

Exploratory data analysis

Figure 2 shows the number of motorcycle crashes from 2010 to 2016 in each parish of
Louisiana. The figure shows that six parishes (Caddo, Calcasieu, Lafayette, East BatonRouge,
Orleans, and Jefferson) experience at least 700 motorcycle crashes per year. Five of these
parishes are in the southern part of Louisiana. The Orleans Parish has the highest number
of motorcycle crashes (1,865 crashes).

A distribution of crash severities based on districts shows that three districts have differ-
ent patterns. KAB (K = fatality, A = incapacitating injury or severe, B = non-incapacitating
injury or moderate) percentages are normally lower than CO percentages in most of the
districts. District 58 (Chase) shows that there is a higher percentage of KAB crashes than
CO (C = possible injury or complaint, and O = no injury or property damage only or PDO)
crashes. However, District 58 represents only 67motorcycle crashes. District 4 (Bossier City)
and District 61 (Baton Rouge) show that percentages of KAB and CO crashes are similar.
These two plots provide a brief narration of the spatial distribution of motorcycle crashes
and severities. The anomalies and over-representation require more rigorous exploratory
analysis on different spatial scales. Future studies can take a deeper look at these anomalies
(Figure 3).

Due to the presence of a wide variety of variables, crash data analysis is complex in
nature. This study developed a precise database based on key contributing factors by

Figure 1. Flowchart of the study design.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 7

Figure 2. Motorcycle crashes by Parishes.

Figure 3. Percentage distribution of KAB and CO crashes by districts.
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Table 1. Crash related variables.

Variable Category Perc (%) Variable Category Perc (%)

Day of Week

Mon_Thurs 48.4
Fri 16.1
Sat_Sun 35.5

Hour (b)

1 am–6 am (01:00–06:59) 4.1
7 am–12 pm (07:00–12:59) 20.4
1 pm–6 pm (13:00–18:59) 48.8
7 pm-12 am (19:00–00:59) 26.7
Season (b)

Spring 30.5
Summer 25.7
Autumn 27.2
Winter 16.6

Collision Type (Collision)

Single Motorcycle (Non-Coll w M/V) 30.5
Rear End 26.1
Rt Angle 18.6
Lt Turn 15.0
Sideswipe 8.0
Rt Turn 1.9

Location (b)

Segment 64.0
Intersection 36.0

Posted Speed Limit (PSL)

25 mph (40 km/hr) or less 10.0
30–35 mph (48–56 km/hr) 25.0
40–45 mph (64–72 km/hr) 33.1
50–55 mph (80–88 km/hr) 24.7
60–65 mph (97–105 km/hr) 3.7
70–75 mph (113–121 km/hr) 3.5

Locality (b)

Business 31.6
Mixed 29.5
Residential 27.1
Open Country 11.8

Roadway Type

TwoWay-No Physical Sep 65.1
TwoWay-Physical Sep 27.2
One Way 7.8

Roadway Relation (RoadRel)

On Roadway 82.9
Beyond Shoulder 15.4
Shoulder 1.8

Access Control (AccessControl)

No Control 88.0
Full Control 7.0
Partial Control 5.0

Alignment (b)

Straight-Level 80.9
Curve-Level 16.1
On Grade 3.0

Traffic Control Type (TrafficControl)

White Dashed Line 32.1
Yellow no Passing Line 10.7
No Control 13.5
Yellow Dashed Line 25.4
Green Sig on 7.8
Stop/Yield Sign 5.3
Red Sig on 5.2

Lighting (b)

Daylight 75.3
Dark-Continuous Street Lts 13.0
Dark-No Street Light 9.0
Dark-Str Lts-Intersect Only 2.7

Weather (b)

Clear 85.9
Cloudy 10.7
Rain/Fog/Sleet/Snow 3.4

Note: aVariable code, which is used in TCA analysis. bVariable code is same as the variable name.

removing non-pertinent variables and crash entries with incomplete information for vari-
ous significant variables (for example, crash entries with variable attributes listed as others,
unknown, or missing were removed). This approach reduced the dataset size by 10%. The
final dataset contains informationof 12,657motorcycle riderswhowere involved in crashes.
This study used research findings from past studies to determine a key set of variables for
this analysis. The final dataset contains 24 variables with 92 attributes in total.

Table 1 lists the descriptive statistics of the crash-related variables. Motorcycle crashes
that take place on the weekend are slightly over-represented compared to weekday
motorcycle crashes. Daytime crashes represent nearly 75% of all motorcycle crashes in
Louisiana. Spring and autumn are the worst seasons for motorcycle crashes.

These two seasons represent around58%of allmotorcycle crashes. In collision types, sin-
gle motorcycle crashes have a higher percentage (around 31% of motorcycle crashes). The
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Table 2. Vehicle and motorcycle rider related variables.

Variable Category Perc (%) Variable Category Perc (%)

Rider Gender

Male 94.6
Female 5.5

Rider Age (MCAge)

15–24 16.4
25–34 23.0
35–44 19.4
45–54 21.2
55–64 15.3
> 65 4.7

Severity Level (MCInj)

Fatal 3.4
Severe 6.3
Moderate 33.2
Complaint 34.3
No Injury 22.9

First Harmful Event (FirstHarmEv)

Collision with Vehicle 74.9
Run-off-Road (ROR) Right 12.8
Overturned/Rollover 6.9
ROR Left 3.1
Crossed Median/Centreline 2.4

Intoxication from All Involved in Crashes (AlcInvol)

No 93.8
Yes 6.2

Number of Vehicles Involved

Motorcycle only 26.6
Motorcycle and One Vehicle 68.0
Multiple Vehicles 5.4

Number of Occupants (NumOccupant)

Motorcyclist only 92.1
With Pillion Riders 7.9
Rider Condition (MCCond)

Normal 68.4

Inattentive 29.4
Impaired 2.2

Prior Movement (PriorMovement)

Proceeding Straight Ahead 66.3
ROR 14.7
Stopped 12.4
Making Turn 6.7

Rider Violation (Violation)

No Violations 56.9
Careless Operation 29.3
Failure to follow rules 11.2
Speeding 2.1
Improper Operation 0.4

Note: aVariable code, which is used in TCA analysis.

other three influential collision types are the rear end, right angle, and left turn. Two-way
roadways, especially roadways with no physical separation, seemmore prone to motorcy-
cle crashes. Road departure motorcycle crashes (i.e. road relation as ‘beyond shoulder’ or
‘shoulder’) represent around 17% of all crashes. Approximately 88% of crashes occurred on
roadways with no access control. Crashes on curved roadways comprise 18% of all crashes.
Motorcycle crashes also have a higher representation in segment related crashes. Around
80% of motorcycle crashes happened on roadways with a speed limit in between 30 and
55mph. Around 22% of the crashes happened in the dark with different lighting condi-
tions. Maneuvering a motorcycle on rainy days is difficult, so it follows that 3.4% of crashes
occurred in rainy conditions.

This study focused on rider related information. Table 2 lists percentage distributions of
vehicle and motorcycle rider related attributes. According to the police reported KABCO
scale, there is a 3.4% fatality rate for riders involved in motorcycle crashes, while there is
only a 0.45% fatality rate for riders in motorcycle and other vehicle crashes all together.
Louisiana data shows that male was the dominant gender group involved in motorcycle
crashes. Around 95% of the motorcycle riders involved in crashes were male. The 25–34-
year-old age group experienced the highest percentage of motorcycle crashes, followed
by the 45–54-year-old age group. Next, in terms of crash involvement, the third highest
groupwas the35–44-year-old agegroup. In summary, the 25–55-year oldmotorcycle riders
contribute 63% of all motorcycle crashes.
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Around 10% ofmotorcycle riders were involved in fatal and severe crashes. Around 44%
of the riders were involved in some sort of violation. More than half of the riders involved in
crashes were in normal condition. Involvement with other vehicles also influenced motor-
cycle crashes. In Louisiana, 6.2% of riders and drivers were intoxicated in the motorcycle
crashdatabase. Inattentive riderswere involved in 30%of the crashes. Around8%of the rid-
ers had additional occupants in their motorcycles. Occupant injury and other associations
were not explored in the current study.

Results and discussions

As a distribution-free method, TCA does not require any prior assumptions like other con-
ventional statistical models. In recent years, different variants of CA (e.g. TCA or MCA) have
gained popularity among researchers fromvarious domains, such as traffic safety engineer-
ing. The sparsity in a data set canbedefined as the percentage of zero abundances. Someof
the common outliers in these datasets are rare observations, zero-block structure, and rel-
atively high valued cells. There is a need tomanage an abundance of data in crash datasets
and generate insights in the presence of outliers. TCA, a sturdy-robust-resistant variation
of CA, is a suitable tool for this analysis. This study used two phases to perform the analy-
sis. In Phase 1, analysis was performed based on the locations of the attributes in the TCA
plot. In Phase 2, individual row (i.e. consideration of each rider) level analysiswas performed
to identify the trends of key variables such as rider age, rider severity, number of vehicles
involved, and types of access control.

Phase 1: clusters based on attribute locations

This method generates a graphical display, known as a TCA plot, which is useful for the
general audience as it shows an n-dimensional display of the attribute locations to cut
through the clutter of complex data dynamics. The display on two dimensions, also known
as biplot, shows the co-occurrence of the variable attributes in a two-dimensional space,
where proximity in the space indicates the similarity of the attributes. The complete TCA
plot (see Figure 4) provides a general overview of the location of the attributes of the vari-
ables. Majority of the variables are shown in black, and variables that are suitable for Phase
2 analysis are shown by different colored texts.

A broad category difference can be found by analyzing the presence of the variables
with reference to either the x-axis or the y-axis (Das and Dutta 2020). The value of the co-
ordinates andmass (relativeweightage of the attributes)measures of the key attributes are
listed in Appendix (Table A1). Figure 4 identifies several key insights:

• The x-axis divides the age group into two broad categories (young and aging riders in
onegroup showing in the lower side of theplot andmiddle-aged riders in another group
showing in the upper side of the plot).

• The x-axis also divides access control into twogroups: no access control in the upper side
and full and partial control in the lower side. It is also seen that location of high posted
speed limits (60 mph and above) are closer to full access control roadways.

• The y-axis divides the involvement of vehicles into two groups: the right side shows
‘motorcycle only’ crashes and the left side indicates ‘multiple-vehicle’ crashes.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 11

Figure 4. Principal MCA plot (based on column or variable based information) for the variable cate-
gories.

• Some of the attributes are far from the other groups of clusters of the variable attributes.
These attributes are roadways with a posted speed limit of 60 mph and above (7.2% of
all crashes), full access control roadways (7% of all crashes), riders that are older than 65
(4.7% of all riders), and a red traffic signal (5.2% of all crashes).

• Due to the lower occurrences and limited association with other attributes, these
attributes represent lower co-occurrence in motorcycle crashes.

Clusters in the upper right (Figure 5a)
Cluster 1 (Var_Cluster01). The attributes in this cluster include dark with intersection
lighting, dark with no lighting, nighttime, alcohol impairment, roadways with a yellow
dashed line, and fatal injury. Usually, alcohol impairment occurs at night. This cluster
indicates that fatal crashes are associatedwith two factors: intersection and alcohol impair-
ment. These attributes describe fatal impaired crashes that occur mostly at intersections
during the night-time and at segments with no lighting at night. Wu et al. (2018) also found
that night-time and impaired crashes are key contributors to motorcycle crashes. Other
studies (Saeed et al. 2019) show that alcohol-impaired crashes can be further explored by
considering neighborhood effects and spatial effects. Countermeasures such as lighting at
night and enforcement can be considered potential countermeasures.

Cluster 2 (Var_Cluster02). The attributes in this cluster are female riders with pillion rid-
ers, inclement (rain/fog/sleet/snow) weather, and weekend. The cluster indicates that the
presence of pillion riders during inclementweather increases the risk ofmotorcycle crashes
of the female riders. It is important to notice that this cluster is close to Cluster 1, which rep-
resents attributes associated with fatal crashes. Multiple studies (Rifaat, Tay, and de Barros
2012 and Savolainen andMannering 2007) observed that female riders were more likely to
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Figure 5. MCA plot (based on column or variable based information) of the upper right and upper left.

be involved in crashes with a high severity level than male riders. However, the findings of
Chung, Song, and Yoon (2014) contradicted this finding. In the study of Quddus, Noland,
and Chin (2002), gender did not significantly affect the outcomes of the injury severity
(fatal vs. not fatal); however, results showed that women suffered more severe injuries
than men when they were injured. This unique finding requires additional investigation
in understanding the role of other latent features.

Cluster 3 (Var_Cluster03). The attributes in this cluster are cloudy weather, winter or
spring as season, rider age groups (25–34 years, and 45–54 years), moderate injury, mak-
ing a turn as prior movement, roadways with no access control (i.e. non-freeways), and
two-way roadways with no separation. This cluster mostly shows the attributes that are
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dominant on rural two-lane undivided roadways with no access control. Turn movement
is an issue on these roadways. These crashes are also associated with moderate injuries.
Eustace, Indupuru, and Hovey (2011) also showed similar findings regarding this associa-
tion. Improvement on two-way roadways with no separation will be beneficial in reducing
crashes associated with this cluster attributes.

Clusters in the upper left (Figure 5b)
Cluster 4 (Var_Cluster04). The attributes in this cluster are mixed locality (residential and
business), sideswipe and right turn collisions, collision with a vehicle as the first harmful
event, unsignalized intersection, lower posted speed limit (30–35mph), no violation by the
rider, and normal rider condition. The cluster shows that not-at-fault riders are involved in
multiple-vehicle turningor sideswipe crashes on low-speedunsignalized intersections. This
cluster mostly highlights the association between

Clusters in the lower left (Figure 6a)
Cluster 5 (Var_Cluster05). The attributes in this cluster are one-way roadway with a white
dashed line, no rider injury, a roadway with physical separation, roadways with partial
access control, business locality, multiple-vehicle crashes, stopped as prior movement,
rear-end crash, and rider failure to follow rules as the violation. This cluster illustrates the
association of the violations (e.g. failure to follow the rules) with intersection related inci-
dents and rear-endcollisions. Chawla, Karaca, andSavolainen (2019) also showed that traffic
violation contributes significantly to motorcycle crashes.

Cluster 6 (Var_Cluster06). The attributes in this cluster are male riders, weekday, clear
weather, age group 55–64 years, daytime, autumn season, no alcohol impairment, no
pillion riders, roadways with 40–45 mph posted speed limit. The majority of these
attributes (for example, male riders = 95%, no occupants = 93%, non-impaired = 94%,
clearweather = 86%, daytime = 70%) are clustered together as these attributes are highly
representative in motorcycle crash data. The other attributes (55–64 years old = 15%,
autumn = 27%, 40–45 mph roadways = 33%) indicate that these attributes mostly occur
with highly representative attributes. The common attributes in the cluster were found to
be significant by other studies as well (Wu et al. 2018; Chawla, Karaca, and Savolainen 2019;
Xin et al. 2019).

Clusters in the lower right (Figure 6b)
Cluster 7 (Var_Cluster07). The attributes in this cluster are young (15–24 years) riders,
complaint injury, summer season, and segment related crash. This cluster shows that young
rider crashes are associated with complaint injury and segment related crashes. It is com-
mon that summer months are associated with high motorcycle exposure with more teen
riders on the road (ROSPA 2017). It is also obvious that the severity type of this cluster is
associated with the young age of the riders. It can be explained that riders generally use
popularmotorbike routes during summer for recreational purpose. Rider licensingprogram
improvement and rider education can help in lowering young rider motorcycle crashes.
Additional enforcement along the popular motorcycle routes during summer months can
also be beneficial.
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Figure 6. MCA plot (based on column or variable based information) of the lower right and lower left.

Cluster 8 (Var_Cluster08). The attributes in this cluster are non-collision with another
vehicle (i.e. single motorcycle), curve alignment, run off-road, inattentive rider, open coun-
try roadways, rollover crash. The patterns of these crashes indicate that most of these
crashes are roadway departure related (i.e. single motorcycle, run off-road, and rollover
crashes) crashes on open country roadways. This cluster also shows that these crashes
occur on curve aligned roadways. Waseem, Ahmed, and Saeed (2019) suggested several
strategies, including reduction of posted speed limits on highways with a greater motor-
cycle ratio, and dislocation or removal of fixed roadside objects. Xin et al. (2019) showed
that sharp (radius ≤ 1500 ft) non-reverse curveswere the riskiest curve design formotorcy-
clists, followed by sharp reverse curves and moderate (1500 ft < radius ≤ 3000 ft) reverse
curves. Other studies (Wu et al. 2018) also found that curve is a significant factor inmotorcy-
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cle crashes. Improving rider awareness by rider education can be useful to reduce crashes
associated with this cluster.

Phase 2: clusters based on locations of individuals

Figure 7 shows the distribution of crash occurrences (each row represents an entry for a
motorcyclist involved in a crash) on both axes. Twenty clusters (each cluster is shown by a
vertical line on the x-axis) were developed from TCA analysis (based on the x-axis). Figure 7
shows that clusters arepresent onboth sidesof the x-axis. Thepoint size indicates thegroup
size of the individuals.

Row level analysis (individual rider level) was conducted using TCA outcomes. The loca-
tion of the coordinates from the individual level analysis generated 20 cluster groups (not
similar to the variable attribute clusters discussed before). In this analysis, four key qualita-
tive variables (rider age, number of vehicles involved, rider severity type, and access control
of the facilities) were used to describe the clusters. This analysis was completed by com-
puting the log-odds ratio (LOR) of yes to no for each cluster with respect to the marginal
distribution. For example, in the age variable, 1 represents young (15–24 years) riders, and
0 represents not young (greater than 24 years) riders.

LORi = ln

(
n1i/n0i
N1/N0

)

Where, LORi = log-odds ratio for the ith cluster for a variable; N1 = frequency of ‘yes’
attribute in a variable; N0 = frequency of ‘no’ attribute in a variable; n1i = frequency of
‘yes’ attribute in a variable (for cluster i); n0i = frequency of ‘no’ attribute in a variable (for
cluster i).

Figure 7. Clusters from row-based analysis (each row represents an entry for a motorcyclist involved in
a crash).
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Using ‘Single vs. Multiple Vehicle Involvement’ as an example, the interpretation of LOR
(S = s) can be given by:

• LOR = 0, then the proportion of single-vehicle crashes in ith cluster equals the propor-
tion of multiple-vehicle crashes in the sample.

• LOR > 0, then theproportion of single-vehicle crashes in cluster i is greater than the pro-
portion of multiple-vehicle crashes in the sample. That is, the cluster i is positively asso-
ciated with multiple-vehicle crashes and negatively associated with multiple-vehicle
crashes.

• LOR < 0, then the proportion of multiple-vehicle crashes in cluster i is larger than the
proportion of single-vehicle crashes in the sample. That is, the cluster i is positively
associated with multiple-vehicle crashes and negatively associated with single-vehicle
crashes.

Some of the key findings from Table 3 are:

• Six clusters (Cluster04, Cluster05, Cluster06, Cluster07, Cluster08, and Cluster09) contain
around 63% of all riders.

• Ten clusters show positive LOR measures for young riders. Seven clusters (Cluster08,
Cluster09, Cluster10, Cluster15, Cluster16, Cluster18, and Cluster20) show positive LOR
values for impaired and KAB crashes. Five clusters (Cluster10, Cluster11, Cluster12, Clus-
ter15 and Cluster17) indicate single-vehicle involvement. This finding indicates that
young male riders are more susceptible to KAB and single-vehicle crashes.

• Seven clusters (Cluster10, Cluster11, Cluster12, Cluster13, Cluster14, Cluster15, and Clus-
ter17) show positive LOR values for single-vehicle crashes. Young riders are overrepre-
sented in these clusters, so are the KAB crashes and no access control roadways.

• Eleven clusters have positive LOR values for KAB crashes. These clusters also show a
high likelihood of young riders, single-vehicle crashes, and crashes on ‘no access control’
roadways.

• Seven clusters (Cluster01, Cluster02, Cluster03, Cluster04, Cluster05, Cluster09, and Clus-
ter13) show a high likelihood of freeway crashes (full or partial access control roadways).
These clusters show a high likelihood of riders above 24 years old, multiple-vehicle
crashes, and CO crashes.

• Each of these clusters has quantitative measures. Explanations can be provided to inter-
pret all of these clusters. For example, Cluster06 has 13.36 percent of all motorcycle
riders. For rider age, vehicle involvement, and KAB injuries, LOR values are negative. It
indicates that the proportion of ‘not young riders’ is larger in this cluster than the propor-
tion of young rider. It also indicates that the proportion of KAB crashes is lower than the
proportion of CO crashes in this cluster. The same is true for single-vehicle involvement.
This cluster shows positive LOR value for ‘access control’ roadways, which indicates that
the proportion of full or partial access control roadway (i.e. freeway) is greater than ‘no
access control’ roadways. The overall interpretation is that this cluster is associated with
freeway related single-vehicle crashes that involve riders older than 24 years oldwith CO
injuries.
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Table 3. Odds ratio by row-based clusters of individuals and attribute groups.

Cluster Count
15–24 years vs. 24

years and above riders
Single vs. Multiple
Vehicle Involvement

KAB vs. CO
Crash

No Access Control vs.
Access Control

Cluster01 35 −1.034 −1.884
Cluster02 167 −0.858 −0.629 −1.473
Cluster03 542 −0.847 −3.756 −0.355 −0.512
Cluster04 1102 −0.468 −3.255 −0.307 −0.302
Cluster05 1495 −0.113 −2.967 −0.122 −0.108
Cluster06 1691 −0.022 −1.824 −0.053 0.022
Cluster07 1647 0.170 −1.347 −0.008 0.171
Cluster08 1129 0.121 −0.865 0.076 0.066
Cluster09 829 0.378 −0.218 0.070 −0.110
Cluster10 620 0.090 0.288 0.104 0.080
Cluster11 544 0.145 0.887 −0.004 0.056
Cluster12 461 0.255 1.466 −0.114 0.216
Cluster13 417 −0.014 2.752 0.182 −0.316
Cluster14 390 −0.106 3.947 0.241 0.028
Cluster15 377 0.141 4.520 0.229 0.629
Cluster16 426 0.169 0.331 0.618
Cluster17 373 −0.131 6.139 0.288 1.694
Cluster18 242 0.173 0.562 1.055
Cluster19 121 −0.354 0.593 2.185
Cluster20 49 0.374 0.981

TCA is a recent addition among various CA methods (for example, multiple correspon-
dence analysis or MCA, Nonlinear Optimal Scaling Method or NOSM, Categorical Principal
Component Analysis or CatPCA, Nonlinear Canonical Correlation Analysis or NLCCA). TCA
generates a proximity map of the variable categories, or attributes, in a low-dimensional
plane by revealing the key patterns or clusters from a multi-dimensional dataset. TCA can
also be used in determining the quantitative measures in the form of ‘log odds ratio.’
This study identified several risk clusters that require additional attention to design suit-
able countermeasures. The findings of attribute-based and individual-based clusters can
be beneficial in reducing motorcycle crashes.

Conclusions

Motorcycle riding is considered one of the most intense modes of transportation. Many
studies have examined motorcycle crash data in order to investigate the influencing fac-
tors. However, the number of motorcycle crashes in the U.S. is still at an unacceptably high
level. The traditional approach of investigating the effect of a single factor on the response
variable (either count or injury type) is not enough to characterize complex crash dynam-
ics. Very few studies have measured clusters of attributes that contribute to motorcycle
crash occurrence. Chung and Song (2018) applied two categorical data analysis methods
(CatPCA, and NLCCA) to Korean motorcycle crash data from 2009 to determine the criti-
cal factors that affect motorcycle crash severity. The current study is unique from Chung
and Song (2018). The current paper makes two major contributions. First, it performed a
U.S. based study that includedmultiple years (2010–2016) of recentmotorcycle crash data.
Second, it used not only an advanced categorical data analysis method but also developed
‘log odds ratio’ to provide a quantitative insight of the results. Such insights are not pro-
vided in the earlier categorical data analysis using crash data. Thus, this is a timely study
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showing the opportunities of TCA in analyzing complex and unsupervised (dataset with no
predefined response variable) crash data.

Tomitigate this research gap, TCA is a viable tool for analyzing complex categorical data
in search of meaningful associations between categorical attributes. This method helps in
understanding diverse variable categories andproduces visual results from the key associa-
tions. Themotorcycle crash dataset has a small number of cases, so eliminating entries with
noise will shrink the dataset significantly. The use of TCA analysis is advantageous because
it allows for the removal of noise in the dataset (Das and Dutta 2020). This study prioritizes
certain key clusters, as well as target countermeasures listed in this study, which will help
authorities to reduce future motorcycle crashes.

This study used a wide variety of roadway and rider characteristics to identify several
key risk clusters from attribute level analysis: impaired crashes at roadways with no light-
ing at night, rural two-lane undivided roadways with no access control, turning related
crashes at mixed localities, violation related rear-end crashes, young male riders, roadway
departure crashes on curved alignments, and female riders with pillion riders in inclement
weather. This study also identified 20 clusters based on the characteristics of individual
crashes. Young riders are disproportionately higher among single-vehicle crashes and KAB
crashes. Clusters with KAB crashes have a high likelihood of having the following character-
istics: single-vehicle crashes, and crashes on ‘no access control’ roadways. Freeway crashes
have a high likelihood of having the following characteristics: riders above 24 years old,
multiple-vehicle crashes, and CO crashes. The key groups of the confluence of factors can
further be examined to recognize appropriate countermeasures. The log-odds ratio values
provide quantitativemeasures of the key attributes, which canbe useful in formulatingmit-
igation strategies (by the safety engineers andpolicymakers) tomakedata-drivendecisions
in improving motorcycle safety.

The current study is notwithout limitations. First, this study provides limited information
on potential countermeasures to reduce motorcycle-specific traffic crashes and associated
injuries. There is a need for extensive research to determine the effectiveness of counter-
measures based on motorcycle crash data over time. Second, the groups of confluence
factors are developedbasedononly twodimensions,which represent a 49%varianceof the
complete database. Usage of the NLCCA for multiple planes (using various combinations
of axes) could be a potential alternative. The limitations of the current study offer various
directions for future research in motorcycle crash investigation.
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Appendix

Table A1. Coordinates and mass values of the variable attributes.

Variable Attribute Axis1 Axis2 Mass Variable Attribute Axis1 Axis2 Mass

AccessControl Full Control 0.129 −0.778 0.003 MCInj Complaint 0.149 −0.139 0.014
No Control 0.019 0.077 0.037 Fatal 0.375 0.356 0.001
Partial Control −0.519 −0.264 0.002 Moderate 0.104 0.225 0.014

AlcInvol No −0.044 −0.045 0.039 No.Injury −0.366 −0.280 0.010
Yes 0.671 0.675 0.003 Severe −0.232 0.396 0.003

Alignment Curve Level 0.993 −0.353 0.007 NumOccupant With Pillion Rider 0.259 0.287 0.003
On Grade 0.795 0.065 0.001 Motorcyclist only −0.022 −0.024 0.038
Straight Level −0.227 0.068 0.034 NumVeh Multiple Vehicle −0.367 −0.145 0.002

Collision Lt Turn −0.431 0.577 0.006 Motorcycle and One Vehicle −0.394 0.133 0.028
Single Motorcycle 0.968 −0.270 0.013 Motorcycle Only 1.084 −0.312 0.011
Rear End −0.326 −0.386 0.011 PriorMovement Making Turn 0.130 0.220 0.003
Rt Angle −0.575 0.450 0.008 Proceed Ahead −0.197 0.152 0.028
Rt Turn −0.522 0.189 0.001 ROR 1.220 −0.458 0.006
Sideswipe −0.353 0.118 0.003 Stopped −0.458 −0.388 0.005

DayofWk Fri −0.166 −0.114 0.007 PSL 25 mph or less −0.203 0.343 0.004
Mon-Thurs −0.146 −0.145 0.020 30–35 mph −0.351 0.191 0.010
Sat-Sun 0.274 0.249 0.015 40–45 mph −0.182 −0.155 0.014

FirstHarmEv Collision with Vehicle −0.370 0.105 0.031 50–55 mph 0.627 0.120 0.010
Cross Median/Centerline 1.099 −0.213 0.001 60–65 mph −0.239 −0.800 0.002
Rollover 0.909 −0.157 0.003 70–75 mph 0.625 −0.868 0.001
ROR Left 1.168 −0.475 0.001 RoadRel Beyond Shoulder 1.202 −0.415 0.006
ROR Right 1.191 −0.377 0.005 On Roadway −0.242 0.084 0.035

Hour 1 am–6 am 0.367 0.528 0.002 Shoulder 0.908 −0.316 0.001
1 pm–6 pm −0.084 −0.196 0.020 RoadType One Way −0.360 −0.238 0.003
7 am–12 pm −0.135 −0.240 0.008 TwoWay No Physical Sep 0.195 0.178 0.027
7 pm–12 am 0.201 0.461 0.011 TwoWay Physical Sep −0.364 −0.358 0.011

Lighting Dark Street Light −0.243 0.553 0.005 Season Autumn −0.141 −0.207 0.011
Dark No Street Light 0.890 0.468 0.004 Spring 0.064 0.167 0.013
Dark Intersection Light 0.331 0.620 0.001 Summer 0.039 −0.122 0.011
Daylight −0.076 −0.174 0.031 Winter 0.052 0.221 0.007

Locality Business −0.494 −0.230 0.013 TrafficControl Green Sig On −0.633 0.305 0.003
Mixed −0.312 0.188 0.012 No Control −0.087 0.275 0.006
Open Country 0.811 −0.531 0.005 Red Sig on −0.588 −0.539 0.002
Residential 0.566 0.294 0.011 Stop/Yield Sign −0.364 0.084 0.002

(continued)
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Table A1. Continued.

Variable Attribute Axis1 Axis2 Mass Variable Attribute Axis1 Axis2 Mass

Location Intersection −0.476 0.298 0.015 White Dashed Line −0.328 −0.295 0.013
Segment 0.267 −0.167 0.027 Yellow Dashed Line 0.535 0.365 0.004

MCAge > 65 −0.083 −0.521 0.002 Yellow No Passing Lane 0.626 0.072 0.011
15–24 0.091 −0.217 0.007 Violation Careless Operation 0.853 −0.352 0.012
25–34 0.088 0.154 0.010 Failure to Follow Rules −0.313 −0.376 0.005
35–44 −0.127 0.126 0.008 Improper Operation 0.406 0.104 0.000
45–54 0.063 0.196 0.009 No Violations −0.407 0.244 0.024
55–64 −0.131 −0.269 0.006 Speeding 0.710 0.284 0.001

MCCond Impaired 1.101 0.737 0.001 Weather Clear −0.025 −0.046 0.036
Inattentive 0.571 −0.483 0.012 Cloudy 0.104 0.299 0.004
Normal −0.281 0.184 0.028 Rain/Fog/Sleet/Snow 0.293 0.220 0.001

MCGen Female 0.305 0.289 0.002
Male −0.018 −0.017 0.039
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